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1 S-Parameters Overview 

1.1 The S-Parameters for a General 2 Port Network 

Suppose we have a 2 port network whose S parameters we have measured accurately on a 
vector network analyzer (VNA) across some frequency range of interest. By a 2 port ‘network’ 
we mean almost any RF device that has 2 ports, with appropriate connectors, that we can safely 
measure on the VNA properly using the ‘full 2-port’ calibration method [1] [2] [3] [7]. We will 
assume that it produces accurate S-parameter values. We will also refer to it as the ‘device 
under test’ (DUT). It must contain linear components, for example resistors, inductors and 
capacitors and it must be operated under linear conditions. It can be an amplifier and contain 
non-linear devices such as transistors and diodes but, as a whole the network must be 
operating linearly [5] [13]. If it is an amplifier, it must be stable and operated with signal levels 
which allow it to work in the linear region of its transfer characteristic. It must not be operated at 
such a high signal level that it is into compression or at such a low signal level that might be 
below the background noise.  

As we are considering calibration of the VNA to deliver full 2-port measurements, once this is 
done the instrument will alternately switch between applying the input power to one port, say 
port 1, and the other port, port 2. Although it is not a requirement, we will assume that the VNA 
has a nominal impedance of 50 Ω with coaxial (unbalanced) connectors. This probably the most 
standard in use today. 

The linear requirement applies to the VNA as well. Most modern VNAs will have quite a good 
dynamic range but there is a risk of exceeding the maximum input power allowed. VNAs will 
generally have some means of adjusting the incident power level used for the measurement [5] 
[13]. Some thought is needed about how to set this before performing the measurement. For 
example, if the VNA has +10 dBm maximum input power, a good choice may be to adjust the 
maximum expected VNA input power to be around 10 dB less than this, 0 dBm. If we are 
measuring an amplifier we should have some estimate of its gain and output 1 dB compression 
point (P1dB). P1dB is, by definition, 1 dB into non-linearity so we need the signal to be 
comfortably below this value. If its P1dB is 0 dBm and we expect a gain of about 20 dB then, 
applying – 20 dBm at the amplifier input might be safe for the VNA but take the amplifier itself 
into compression so it would be safer to back off (reduce) the input by say another 10 dB to  -
30 dBm. Note that, on increasing the input power level, some amplifiers may quite abruptly go 
into compression.  

Finally, we will assume that we have assigned the DUT ports correctly as ‘1’ and ‘2’ related to 
the VNA connections when the measurements were made. That should have been clear from 
the markings on the VNA. Normally port 1 on the VNA connects to what we define as port 1 on 
the DUT and similarly with port 2. There is no rule about which port on the VNA should be 
connected to which actual port on the DUT as long as we know which ports were in fact 
connected to correctly relate the measurements. Having said that, if we are measuring a non-
reciprocal device such as an amplifier, for which power is intended to travel in one direction 
only, it is very common to make port 1 the input port and port 2 the output port. We should be 
comfortable with any sort of port definitions which might be defined.   

We are not going to dwell too long on VNA setups but will look at the S-parameter results 
themselves and what can be done with them. Copious information on S-parameters and VNA 
measurements is available from VNA manufacturer’s application notes and other references [1] 
[3] [4] [5] [7]. Now let us assume that we have a good set of S-parameters for the DUT, which 
we will simply refer to as a 2-port network, and let us connect it to an arbitrary source and load 
as shown schematically in Figure 1-1. 
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Figure 1-1 Some general 2 port network connected to an arbitrary source and load  

1.2 Termination of a 2-Port Network in an Arbitrary Source and Load Impedance 

Figure 1-1 shows the 2-port network connected to an arbitrary source on the left, which is 
represented by a Thevenin equivalent circuit, and an arbitrary load on the right [1] [2] [10] [11]. 
In this case there is no allowance for the delays inherent in any connecting cables. Therefore, at 
the highest operating frequency the wavelength within the connecting lines is assumed to be 
much greater than the physical dimensions of the components. 

Using transmission line theory and the associated equations we must define a (nominal) system 
impedance or characteristic impedance (Z0). This provides a reference impedance which is 
necessary for all transmission line systems. In a perfectly matched system using  Z0 = 50 Ω the 
source and load impedances will of course be exactly 50 Ω [4] [8][14]. There would be no 
reflected waves and therefore no standing waves. However, in the real world (no pun intended) 
shown in Figure 1-1, the actual impedances will differ from 50 Ω, have reactive elements and be 
functions of other parameters, for example frequency and temperature. Therefore, standing 
waves will exist at ports 1 and 2. 

We will generically refer to the 2-port network as a network but it could be an amplifier, 
attenuator, filter or anything else which operates linearly and for which we have a reliable set of 
S-parameter measurements. The ports have been named 1 and 2 as shown. In this case, we 
are considering port 1 to be the input and port 2 the output. It does not matter how we number 
the ports but we do need some sort of referencing system to ensure that we keep track of the 
correct port connections. The port numbers we actually choose will relate to the indices of the S-
parameter matrix elements. 

Unless stated otherwise, all values are complex quantities because they are all amplitude and 
phase sensitive. This applies to all of the electrical quantities: voltages, reflection coefficients, 
impedances, gains, losses. It may even be applied to power, but we are mostly only interested 
in the real part. 

The wave directions can be confusing. Ultimately, in the connected system, we require the 
power to flow from the source on the left to the sink (load) on the right. Note that the wave 
directions either side of the network have positive subscripts into the associated port and 
negative subscripts out of the associated port. These are consistent with how the network was 
measured using the VNA as described in Section 1.1.    
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In the algebra which follows, we must keep track of which quantities are (linear) complex and 
which are just magnitudes or real values [2] [9] [10]. We will assume that all of the parameters 
have been measured at the same frequency. 

With reference to Figure 1-1: 

SZ  is the source impedance (Ω). 

LZ  is the load impedance (Ω). 

S  is the reflection coefficient looking into the source only (unitless). 

L  is the reflection coefficient looking into the load only (unitless). 

IN  is the reflection coefficient looking into port 1 of the network whilst the load is 

connected and the source disconnected (unitless). 

OUT  is the reflection coefficient looking into port 2 of the network whilst the source is 

connected and the load disconnected (unitless). 
 
The forward and reverse voltage waves listed below relate to the connected system and 
were chosen to be consistent with how the stand alone S-parameters were measured by 
the VNA: into the port (positive) and out of the port (negative). 
 

1V +  is the forward voltage wave incident at port 1 (V). 

1V −  is the reverse voltage wave reflected at port 1 (V). 

2V +
 is the forward voltage wave incident at port 2 (V). 

2V −  is the reverse voltage wave reflected at port 2 (V). 

The reflection coefficient at a port is defined as the reflected complex voltage divided by the 
incident complex voltage, so the reflection coefficient itself is also complex [2] [12]. Therefore, in 
the connected cascade shown in Figure 1-1, the following reflection coefficients are defined as 
follows: 

  (1.1) 

   (1.2) 

For  and , noting that we have defined the incident and reflected voltages looking into the 

ports of the network, therefore: 

  (1.3) 

  (1.4) 

The convention for the forward and reflected voltages will be clear from the diagram. The 
subscript is associated with the port, 1 or 2 and includes a positive sign if the wave is entering 
the port or a negative sign if the wave is emerging from the port. 
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1.3 Power Waves and S-Parameter Definitions 

For an n-port network, the scattering or S-parameter matrix is an n  by n  matrix. In our case the 

network has 2 ports so 2n =  and we will denote the associated S-parameter matrix by the 

uppercase letter ‘S’ in bold italic,  [1] [2] [3] [7]. Regular type will be used for each of the 

elements within the matrix. The first and second subscripts of each element will be the row and 
column respectively. Therefore:  

 
11 12

21 22

S S

S S

 
=  
 

S  (1.5) 

With S-parameters it is useful to deal with quantities which are known as power waves [4]. 
These are still complex values and are related to the forward and reverse voltages at each of 
the ports, normalised by the square root of the system impedance which, by definition, is a real 
quantity. We use the lower case letter a  to denote a power wave incident at a port and the lower 

case letter b  for a power wave that is reflected from a port. In each case we include a subscript 

according to the port number. So, for example  is the power wave incident at port 1 and  is 

the power wave reflected from port 2. For the 2-port network, the power waves are related to the 
incident and reflected voltages at each of the ports as follows: 

  (1.6) 

  (1.7) 

  (1.8) 

  (1.9) 

The following matrix defines the 2 port S-parameter matrix in terms of power waves [1] [3] [7]. 

  (1.10) 

Multiplying out the matrices gives 

  (1.11) 

and 

  (1.12) 

(1.11) and (1.12) are used to define the individual S-parameter matrix elements. By definition, if 
port 2 was loaded with precisely the characteristic impedance (Z0) there would be no reflected 
wave from the load: 
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  (1.13) 

•  is defined with , so  

  (1.14) 

•  is defined with , so  

  (1.15) 

•  is defined with , so  

  (1.16) 

As previously noted, the required conditions  and  may be achieved by terminating 

the associated port with a high quality load whose impedance is exactly . This is the principle 

used by a vector network analyzer (VNA) to measure S-parameters.  High specification VNAs 
also include multi-port error correction algorithms, whose purpose is to correct for uncertainties 
of the source and load impedances themselves. 

1.4 Complex Power and Power Gain Definitions 

 

Figure 1-2 The 2-port network connections showing the power definitions 

Figure 1-2 is a schematic for the same configuration as that shown in Figure 1-1, but in this 
case it shows the power flow definitions at each of the stages as follows [6]: 

• Power available from the source, AVSP . 

• Input power to the network, 
INP . 

• Power available from the network, AVNP . 

• Power dissipated in the load, LP  

These will be used for the power gain definitions.  
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To arrive at the power input to the network 
INP  we need to find an expression for the average 

(or mean) power at the same point moving towards the load. Average power is the correct 
power definition applicable to the power gain definitions in this case, as we are using pure 
sinusoidal sources. There is no form of modulation, distortion or noise under consideration. 
Average power is calculated by its heating effect averaged over many cycles. If the power 
originates from sinusoidal voltage and current waveforms which are in phase, the resulting 
(instantaneous) power waveform will have a period that is half of that of either of the original 
waveforms, or twice the frequency. Its waveform will not be sinusoidal because of the square 
law relationship between the sinusoidal voltage (or current) and instantaneous power. 

There are many other definitions of power, in particular peak power which is commonly 
specified in radar systems or modulated communications systems. The term root mean square 
(RMS) power or ‘RMS power’ is sometimes used ambiguously when actually referring to 
average power. This is generally understood to mean average power derived from RMS voltage 
and/or current waveforms. 

1.4.1 Useful Complex Relationships 

If A  is any complex number, then 

 ( ) ( )*1
Re

2
A A A= +  (1.17) 

where ( )Re  means ‘real part of’ and the asterisk superscript means ‘complex conjugate of’. 

So, for example, if A x jy= + , then *A x jy= − . 

If B  is another complex number then for the product of the real parts of each of the complex 

numbers A  and B is given by 

 

( ) ( ) ( )( )

( ) ( )

( )

* *

* * * *

*

1
Re Re

4

1 1

4 4

1
Re

2

A B A A B B

A B AB AB A B

A B AB

= + +

= + + +

= +

 (1.18) 

(1.18) is true because 

 ( )
*

* * * *AB AB A B A B+ = +  (1.19) 

It is understood that the magnitude of a complex number A can be inferred from Pythagoras’s 

theorem applied to the magnitudes of its real and imaginary components which, by definition, 

are at right angles, so that if A x jy= + , then  

 

2 2

2 2 2

A x y

A x y

= +

= +
 (1.20) 

Another useful relationship is that the magnitude squared of a complex number is the product of 
the complex number itself and its conjugate, so 
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2*AA A=  (1.21) 

This may be verified by sketching vectors for a complex number and its conjugate on an argand 
diagram. Both will have the same magnitude. 

If we have two complex numbers A  and B  such that 

 A x jy= +  (1.22) 

and 

 B p jq= +  (1.23) 

Then some complex arithmetic will confirm the following relationships 

 

AB A B

AA

B B

=

=
 (1.24) 

Returning to Figure 1-1, we can use (1.18) to calculate the real power W at port 1, the input to 

the network, arising from the total input voltage 1V  (without any + or – sign in the subscript). The 

input total voltage is the voltage that results from the complex sum of the forward (or incident) 

voltage 1V +  and the reflected voltage 1V − , so [1] [2] [3] [7] 
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 (1.25) 

The expression for W contains the constant value 
2

1V  which is the square of the amplitude of 

the total input voltage of the network. A sinusoidal (strictly co-sinusoidal) function of time in 

exponential form, 1V  could be expressed as 

 1 1
ˆ cosV V t=  (1.26) 

Using Euler’s identity and complex exponential format for a general variable x  of the form [9] 

 cos sinjxe x j x= +  (1.27) 

Then 

 ( )

( )

1 1

1 1
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V t jV t
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
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=

= +

=

 (1.28) 
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where 

1V is the instantaneous value of the sinusoidal voltage 

1V̂  is the peak value (amplitude) of the voltage 

2 f =  is the angular frequency of the source in radian per seconds (rad/s), and 

f  is the frequency in Hertz (Hz). 

Following the convention in electrical engineering for complex exponentials that the real part 
operator may be omitted and the sinusoidal waveform may simply be expressed as 

 1 1
ˆ j tV V e =  (1.29) 

The amplitude of the sinusoidal voltage may alternatively be expressed as a magnitude in the 

form 
1V , therefore 

 1 1

j tV V e =  (1.30) 

From (1.25) the term 
2

1V is given by squaring the expression in (1.30), that is 

 
22 2

1 1

j tV V e =  (1.31) 

This represents a cosine wave at twice the fundamental frequency. Like any sine or cosine 

waveform, it will have a mean of zero over many cycles. For the average power MEANW  therefore 

may be given by either of the following expressions. 
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 (1.32) 

1.5 Bi-directional Power Along a Transmission Line 

The configuration shown in Figure 1-2 is like an unmatched transmission line. There will be 
components of forward and reflected voltages and currents that will create corresponding (total 
or standing wave) voltages and currents. The following equations are based on the equations 
associated with transmission line theory [1] [2] [10] [11]. They describe the total instantaneous 
voltage, made up of the forward and reverse voltages; and the total instantaneous current, 
made up of the forward and reverse currents. 

The total instantaneous voltage at port 1: 

 
1 1 1V V V+ −= +  (1.33) 

The total instantaneous current at port 1: 

 
( )

0 1 1 1

1 1 1

0

1

Z I V V

I V V
Z

+ −

+ −

= −

= −
 (1.34) 
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The instantaneous power is the product 1 1V I . This may be obtained by multiplying (1.33) and 

(1.34), then substituting expressions for 1V +  and 1V −  in terms of the forward and reverse power 

waves, 1a  and 
1b  respectively, obtained from (1.6) and (1.8) as follows: 

 

( )( )

( )

( )

0 1 1 1 1 1 1

2 2

1 1 1 1

0

2 2

1 1

2

0 1

2
21

0

1

1

1 IN

Z V I V V V V

V I V V
Z

V V

Z V

V

Z


+ − + −

+ −

+ −

+

+

= + −

= −

 
= − 

 

= −

 (1.35) 

The last line of (1.35) used the definition of 
IN  from (1.1). Remembering that the voltages and 

currents considered in (1.35) are instantaneous values of sinusoidal waveforms, so the product 

 is also instantaneous. From the discussions in Section 1.4, this may be converted to a 

mean power 
INP  by using the first line of (1.32), changing 1V + , 1V −  and therefore 

IN  to their 

magnitude values. This provides the following result. 

 ( )
2

21

0

1
2

IN IN

V
P

Z
+

= −  (1.36) 

1.6 Unilateral and Bilateral Properties of the Network 

Looking at Figure 1-1 again, consider what might happen to  if we changed  (and 

therefore ).  

If the network was a reasonably high gain amplifier the answer might be ‘not much’ or by some 
negligible amount. In some cases amplifiers are deliberately designed as ‘buffers’ precisely for 
this reason [5] [13]. However one of the important advantages of S-parameters is that they take 
account of the effects of signals in both directions. All such signals are expressed in both 
amplitude and phase. If we are using S-parameters to design a 2-port network, We do not want 
to get this wrong. Otherwise, if we are trying to design an amplifier, it may not amplify and 
instead oscillate. If we are trying to design an oscillator, it may not even start to oscillate when 
switched on. A perfect buffer amplifier is an example of a unilateral device (the signal 
transmission is in only one direction). More generally, most 2 port devices have at least some 
bilateral properties which must be taken into account. 

Using the definitions of the  and power waves from equations (1.6), (1.7), (1.8) and  (1.9)

and substituting them into (1.11) and (1.12) 

       (1.37) 

From (1.4) 

  (1.38) 

Substituting (1.38) into (1.37): 

1 1V I

IN LZ

L

a b

1 11 1 12 2V S V S V− + += +

2 2LV V+ −=
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  (1.39) 

A similar substitution for  results in 

  (1.40) 

Re-arranging (1.39) in terms of  gives 

  (1.41) 

Similarly, from (1.40) 

  (1.42) 

Equating (1.41) and (1.42), after some re-arrangement, yields 

  (1.43) 

Thus 

  (1.44) 

A similar argument applied to  gives the following result 

  (1.45) 

Equations (1.44) and (1.45) are very useful in S-parameter design and matching problems [1] 
[2] [3] [7]. Equation (1.44) tells us how the reflection coefficient that we see at the input to the 

network 
IN  is affected by the output loading of the network. Equation (1.45) describes how the 

output reflection coefficient 
OUT  is affected by the source impedance. 

Some 2-port devices are said to be symmetric if they will have identical values for  and , 

together with 11 22S S= . For example, we would expect a perfect attenuator to have the same 

attenuation for whichever direction the power flows through it, so it would have symmetrical S-
parameters.  

The product , also known as the open loop gain, is an important quantity for many 2-port 

networks. If its input port was at port 1,  would be a linear measure of what would happen to 

the signal applied at the input and arriving at the output, port 2.  is known as the linear 

transmission, or linear gain in the case of an amplifier.  After the input signal has been amplified 

(by ) then, in a real network with imperfections, a proportion of the signal might find its way 

from the output back to the input again if 12S  was non-zero. 
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The open loop gain is important, if:  

• we wish to design an amplifier that will not oscillate; 

• we wish to actually design an oscillator.  

In fact, transistors are available for oscillators which have designed-in finite 
12 21S S values. 

Transistors for use as amplifiers will be designed with the smallest possible value for 
12 21S S . A 

2-port network is said to be perfectly unilateral if 
 
is zero. When we connect together 

several 2-port networks into a cascade, with the output of each network connected to the input 
of the next, we normally wish each network to be as unilateral as possible to avoid any risks of 
oscillations or other instabilities. 

 

12 21S S
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2 Power Gain Definitions 

Refer again to Figure 1-1. We are now going to consider cases were the 2-port network under 
consideration is an amplifier, more specifically a power amplifier [6]. A power amplifier, as its 
name implies, is one that is designed to substantially increase the RF power of a signal applied 
at the input.  

If we buy a power amplifier with nominal input and output impedances of, say 50 Ω, how sure 
can we be that it will be sufficiently close to 50 Ω for our requirements? We might expect it to 
differ slightly from 50 Ω but by how much and what can we tolerate happening to the phase? If 

the input impedance of a unilateral amplifier was 48 10j+   for example, it will give quite a 

respectable return loss (about 20 dB relative to 50 Ω), in fact identical to if the input impedance 

had been 48 10j−  . If the impedance of the source was 48 10j−   and input impedance of 

the amplifier was 48 10j+  , that would be a perfect conjugate match. Power would transfer 

perfectly from the source to the amplifier without any loss. Now suppose that the impedances of 

the source and amplifier happened to be identical at .  Because that is not a 

conjugate match, quite a lot of the power from the source would be reflected. In fact the 
magnitude of the reflection coefficient at the input, but relative to the source impedance and not 
50 Ω, would only be 0.208, or a return loss of about 14 dB. That means that the reflected power 
at the amplifier input would be 14 dB less than the incident power, quite a significant waste and 
potential for instability, especially if we want to transfer high power. 

It is for these type of situations that there are different definitions of power gain. Also you will 
remember that I conveniently assumed the amplifier to be perfectly unilateral as that 
approximation saves us lots of trouble. From this point onwards we will assume that the network 
is bilateral. That is to say that we will allow for signals in both directions so different loadings of 
the output can affect what is seen at the input, and vice versa. 

Here again are the types of power gain that we first met in Section 1.4: 

• Power available from the source, AVSP . 

• Input power to the network, 
INP . 

• Power available from the network, AVNP . 

• Power dissipated in the load, LP  

There are 3 ways of defining power gain with the following (scalar) quantities: 

• Operating Power Gain (
OP L ING P P= ). 

• Available Power Gain (
A AVN AVSG P P= ). 

• Transducer Power Gain (
T L AVSG P P= ). 

These are described in the following sections. 

2.1 Operating Power Gain 

The operating power gain OPG  is the ratio of the power dissipated in the load  to the power 

delivered to the input of the 2-port network , so 

 L
OP

IN

P
G

P
=  (2.1) 

From Figure 1-1, if the total voltage at the input: the standing wave which is made up of the 

forward and reverse waves,  and  respectively, is 1V , then 

48 10j+ 

LP

INP

1V + 1V −
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  (2.2) 

Using the definition of input reflection coefficient in (1.1),  

 

( )

1 1 1

1 1

1 1

IN

IN

V V V

V V

V





+ −

+ +

+

= +

= +

= +

 (2.3) 

An alternative way of describing  is in terms of the potential divider action of  and  on 

the voltage at the source , so 

  (2.4) 

Equating (2.3) and (2.4) 

  (2.5) 

At this point it is useful to get expressions for the source and load impedances,  and  

related to their associated reflection coefficients  and  respectively. When we express a 

reflection coefficient in terms of impedance we need to relate it to a reference impedance and 
without doubt the most useful would be the same system impedance that we used for the S-

parameters, . Therefore, for the load,  

  (2.6) 

Re-arranging in terms of the load impedance 

  (2.7) 

Similarly, for the source and input impedances 

 
0

1

1

S
S

S

Z Z




 +
=  

− 
 (2.8) 

and 

 
0

1

1

IN
IN

IN

Z Z




 +
=  

− 
 (2.9) 

There are of course similar expressions to (2.6) and (2.7) for all of the other reflection 
coefficients.  

1 1 1V V V+ −= +

1V SZ
INZ

SV

1
IN

S

S IN

Z
V V

Z Z

 
=  

+ 
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By substitution from (2.8) and (2.9) for SZ  and 
INZ  into (2.5) after a little perseverance we will 

get the following result 

 
( )

( )
1

1

2 1

SS

S IN

V
V



 
+

−
=

−
 (2.10) 

Next we call on our study of average power in Section 1.4 and use (1.36) as follows: 

 

( )

( )

2 2

1

0

2 2

2

2

0

1
1

2

1
1

8 1

IN IN

S S

IN

S IN

P V
Z

V

Z






 

+= −

−
= −

−

 (2.11) 

Noting that 2V − , the reflected wave from port 2 is identical to the incident wave at the load, then 

the power delivered to the load LP  is, by the same reasoning, 

 ( )
2

22

0

1
2

L L

V
P

Z
−

= −  (2.12) 

A few more stages of quite tedious algebra are still required. From (1.40), in terms of 2V −  

 21 1
2

221 L

S V
V

S 
+

− =
−

 (2.13) 

As the complex numbers are in the form of products and/or quotients, (2.13) can be written in 
magnitude form as follows 

 
21 1

2

221 L

S V
V

S 

+

− =
−

 (2.14) 

Substituting for 2V −  from (2.13) into (2.12) 

 
( )2 2 2

21 1

2

0 22

1

2 1

L

L

L

S V
P

Z S





+ −
=

−
 (2.15) 

Substituting for 1V +  from (2.10) into (2.15) 

 
( )2 2 2 2

21

2 2

0 22

1 1

8 1 1

L S S

L

L S IN

S V
P

Z S

 

  

− −
=

− −
 (2.16) 

Substituting for LP  from (2.16) and for 
INP  from (2.11), the operating power gain OPG  is 
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( )

( )

2 2

21

2 2

22

1

1 1

L
L

OP

IN IN L

SP
G

P S



 

−
= =

− −
 (2.17) 

As this is a power gain it is a ratio of powers, more accurately mean powers, for which phase is 
not applicable. It is clear from (2.17) that, although they were derived from complex quantities, 

the coefficients involved are actually all magnitudes so the result OPG  is a scalar quantity. 

2.2 Available Power Gain 

The available power gain  is the ratio of the power available from the 2-port network  to 

the power available from the source , so 

  (2.18) 

The (maximum) power available from the source AVSP  is when it is conjugatively matched to the 

input of the network. That is, when the input impedance of the network is the conjugate of the 
source impedance, or 

 
*

IN S =  (2.19) 

Substituting for 
IN  from (2.19) into (2.11), and remembering that 

 
2 2*

S S =  (2.20) 

then 

 

( )

( )

2 2
2

*

2
2

0

2 2

2
0

1
1

8 1

1

8 1

S S

AVS S

S

S S

S

V
P

Z

V

Z










−
= −

−

−
=

−

 (2.21) 

Similarly to the source, the power available from the network is equivalent to the maximum 

power which can be delivered to the load. That is, when 
OUT  is a conjugate match to the load 

reflection coefficient L , or  

 
*

L OUT =  (2.22) 

Therefore, 

 L OUT =  (2.23) 

Substituting from (2.22) and (2.23) into (2.16) 

AG AVNP

AVSP

AVN
A

AVS

P
G

P
=
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1 1
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 (2.24) 

The following step is derived from (1.44)  

 
( )

2
2 2

112

2
*

22

1 1
1

1

S OUT

S IN

OUT

S

S

 
 



− −
− =

−
 (2.25) 

Substituting (2.25) into (2.24) gives the result 
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 (2.26) 

 By substituting (2.21) and (2.26) into (2.18) the result for the available power gain AG  is 
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1 1

S
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A

AVS S OUT

SP
G

P S



 
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= =

− −
 (2.27) 

2.3 Transducer Power Gain 

The transducer gain  is the ratio of the power delivered to the load  to the power available 

from the source , therefore 

  (2.28) 

We already have expressions for LP  and AVSP  from (2.16) and (2.21) respectively, so the 

transducer power gain TG  is 
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 (2.29) 

2.4 Comparing the Power Gain Definitions 

We have at last derived the expressions for operating power gain OPG  (2.17), available power 

gain 
AVG (2.27) and transducer power gain TG  (2.29). These are repeated below for 

convenience 
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1 1

L
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 (2.30) 
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 (2.32) 

All three power gain definitions are of course scalar quantities. If we had a hypothetical system 

in which all the impedances were exactly equal to 
0Z then, as 

0Z  is the system impedance, all 

of the magnitudes of the reflection coefficients would also be zero. This is implied by (2.6) in the 

case of L  and similar other equations for the other reflection coefficients. Therefore, from 

(2.30), (2.31) and (2.32), for a perfectly matched system, 

 
2

21OP AV TG G G S= = =  (2.33) 

More realistically, the network might be an active device such as a transistor. Provided it is 
operating linearly and is unconditionally stable at the frequency under consideration, then our 
discussions are reliable. Today’s technology cannot yet produce transistor architectures which 

have impedances near our most common system impedance of 50  and maintain them over 

frequency, so various forms of matching are commonplace. 

 

2.5 Power Gains in Practical Systems  

Often in communications systems we are faced with needing to insert a fairly arbitrary 2-port 
network into a cascade of 2-port networks as shown in Figure 2-1. Figure 2-1 (a) shows that, at 
the beginning of the cascade, there would be some form of source, in this case represented by 

a Thevenin equivalent circuit with voltage source AV  and a source impedance AZ .  At the output 

of the cascade there would be a load, in this case BZ . In general, AZ  and BZ  are both complex 

and frequency-dependent. The intermediate stages comprising the cascade may have many 
different, frequency dependent, input and output impedances. These may be considered 

equivalent to a single Thevenin equivalent circuit with source impedance SZ at the input and a 

load of LZ at the output. Now suppose we wish to insert a 2-port network KS  into the cascade, 

whose S-parameters are already known, as shown in Figure 2-1(b). If it was inserted directly 
into the cascade, without any matching, it would probably not be matched by chance so we 
could expect some reflected power at either port of the network, probably both. 

In this case, if we were interested in how the network affects the overall power gain of the 

cascade, we would use the definition of transducer power gain TG  for the network, as defined in 

(2.32). By using (2.32) we would automatically take into account the mismatches present at the 

input and output of KS . The impedance SZ results in the reflection coefficient S and similarly 

for LZ  and L . 
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Figure 2-1 A schematic showing two ways of substituting a 2-port network into a 
cascade: unmatched (a) and simultaneously conjugately matched (b) 

2.5.1 Matching for Maximum Power Transfer 

By inserting the network KS into the cascade as we did in Section 2.5, we did not make the 

assumption that KS  was unilateral. In other words, we are not assuming that we can simply 

match the input with a source impedance of 
*

11S  and the output with a load impedance of 
*

22S . 

The S-parameters of the network were measured stand-alone using a system impedance 
0Z

which is not necessarily anything like those we are trying to match to.  In a network such as this 
which may not be unilateral, when it is inserted into the cascade, the impedance seen at the 
input may be affected by the output loading. Similarly the impedance seen at the output may be 
affected by the input or source loading. We would need to use (1.44) or (1.45) to determine the 
actual input impedance or output impedance.   
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Figure 2-2 A generic 2-port network that is simultaneously conjugately matched to a 
source and load 

To maximise the power transmitted along the cascade, one solution would be to design 

simultaneous input and output matching for the network KS [8]. This is shown in Figure 2-1(c) 

and with more detail in Figure 2-2. M1 and M2 are matching networks positioned respectively at 

the input and output of the network KS and they are designed to ensure that each input and 

output impedance seen is matched by a conjugate match in the opposite direction. The 
impedances and their conjugates are shown in Figure 2-2. In practice there are several 
prerequisites for matching of this type to work successfully, the most challenging requiring M1 
and M2 to be sufficiently low loss across the intended operating frequency range. 

Once successfully designed this form of matching will ensure that power is efficiently transferred 
from input to output and will be equivalent to the result in (2.33).  
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